Why is my MPG soo bad? | Page 3 | Ford Explorer Forums - Serious Explorations

  • Register Today It's free!

Why is my MPG soo bad?

Ok here's an idea.
Since regular air is 78% nitrogen, wouldn't you eventually end up with almost 100% nitrogen filling up with regular air since the other gases with the smaller molecules would leak out, then you add more air which is 78% nitrogen again? get what I mean?

Lets say your tire has 3 sq ft of air.
3 x 0.78 = 2.34
tire looses the other gases, you're left with 2.34 sq ft of nitrogen.
so you refill the lost 0.66 sq ft of air with regular air again
0.66 x 0.78 = 0.5148
now you have 2.34 + 0.5148 of nitrogen
that leaves you with 0.1452 of regular air left.
0.1452 x 0.78 = 0.113256
If you add up all those numbers you get 2.968056 of 3 sq ft that will be nitrogen after 2 fill ups.

It cant be that simple is it?
 



Join the Elite Explorers for $20 each year.
Elite Explorer members see no advertisements, no banner ads, no double underlined links,.
Add an avatar, upload photo attachments, and more!
.





You got me. Thats just what I was told and never really put much more thought into it. I will say I have been doing this since 2000 and I do beleive that I get better tire wear. Never really noticed anything more.
 






I think you need to take temperature, pressure and actual size of the passage that would only permit only Oxygen molecules and not Nitrogen ones to seep out.

found this
http://www.getnitrogen.org/pdf/graham.pdf

Here pasted it.
Are Nitrogen Molecules Really Larger Than Oxygen Molecules?
The correct answer, with respect to “permeation”, is yes.
Graham’s Law Explained:
The Difference between Effusion and Permeation
There's often confusion associated with the molecular size, molecular weight and permeation properties of
oxygen and nitrogen molecules, and GNI is often called to task to explain why nitrogen actually migrates
(permeates) out through the rubber of a tire slower than does oxygen. We felt it best to leave it to the expertise
of Dr. Keith Murphy to elaborate on the scientific principles:
"Effusion" calculations are not appropriate for "permeation" of gas molecules through materials, such as the rubber of
tire walls. There is a fundamental difference in transport occurring through “effusion”, and transport occurring through
“permeation”.
Effusion would be appropriate, if the O2 and N2 molecules were passing through a relatively large passage way
through the tire wall, such as a leak. Graham's Law for "effusion" applies ONLY if the exit through which the molecules
pass is relatively large compared to the size of the molecules and does NOT obstruct or constrain one molecule from
passing through relative to the other molecule. O2 and N2 molecules are only slightly different in molecular size but
both are very small. Thus, to constrain one molecule's (e.g., molecule of type A) passage relative to the other's (e.g.,
molecule of type B) passage, that passage way size must be fairly close in dimension to the sizes of the molecules
themselves.
Graham's Law does not apply, if the passage way is very small, as occurs for dimensions of passage ways in-between
the polymer chains in a solid rubber, where the dimensions between the polymer chains do indeed constrain passage
of the larger size molecule, which is actually N2, compared to less constraint on the smaller size molecule, which is
actually O2.
It is often mistakenly assumed that "molecular size" correlates directly with "molecular weight". O2 does have a greater
molecular weight (32) than N2 (28), but O2 is actually smaller in size. Thus, O2 fits through the relatively tight passage
ways between polymer chains in the rubber more easily than does N2. The difference is size between O2 and N2 is
very small, only about 0.3 times 10 to the -10th meters (0.00000000003 meters).
Among the various descriptions of the sizes of molecules, that most applicable to transport phenomena is called the
"kinetic diameter" of molecules. The kinetic diameter is a reflection of the smallest effective dimension of a given
molecule. It is easy to visualize that a given molecule can have more than one dimension, which characterizes its size,
if the molecule is not spherical. O2 and N2 are diatomic molecules (two atoms joined by a chemical bond or bonds),
not spheres in shape but rather cylindrical in shape, akin to the shape of a tiny jelly bean. Thus, a "length" dimension
of the cylindrical shape is a larger dimension than the smaller "waistline" diameter of the cylindrical shape. In transport
phenomena, the molecule with the smallest effective waistline diameter is that which behaves as the smallest
molecule, i.e., has the smallest kinetic diameter.
Literature reports of kinetic diameters for O2 and N2 molecules, derived from several different types of experimental
measurements, give slightly different values, but all show that O2 has a slightly smaller diameter than N2. The
following examples expressed in Angstrom units demonstrate this (one Angstrom unit is 10 to the -10th power meters,
i.e., one-ten-billionth of a meter): from gas viscosity data, O2 2.96 and N2 3.16 (difference 0.20); from van der Waal's
interaction data, O2 2.90 and N2 3.14 (difference 0.24); from molecular refraction data, O2 2.34 and N2 2.40
(difference 0.06). Other experiments, less applicable to transport situations, such as from closest packing, when the
two molecules exist in a frozen solid state at very low temperatures, still show O2 to be a smaller size than N2 (O2
3.75 and N2 4.00, difference 0.25).
The reason that O2, despite a larger MW 32, has a smaller diameter than N2 MW 28, lies in the electronic structure of
the molecules. As indicated by quantum mechanical theory of molecules, the electrons of a molecule form a diffuse
"cloud" surrounding the nuclei of the atoms in the molecule. The electron cloud around the oxygen nuclei in the O2
molecule is smaller, more compact in size, due to attractive electrostatic interactions between the electrons in the
cloud and the greater positive charge of the nuclei of the O atoms in the O2 molecule. Each oxygen atom has 8
protons in its nucleus, while each nitrogen atom has only 7 protons in its nucleus. Thus, the overall size of the electron
cloud of the O2 molecule is smaller than for N2, in part because its electron cloud is drawn in closer to the O nuclei by
the greater positive charge on the O nuclei.
The dimension of the molecule's electron cloud defines the size and shape for a given type of molecule. When one
molecule bumps into another molecule, the outer-most extent of the electron clouds of each molecule repel each other
in that local vicinity of the contact between the molecules. Each colliding molecule's electron cloud experiences a
repulsion, due to the proximity to the like electrical charge of electrons around the other molecule in the collision. Since
like electrical charges repel each other (like-repels-like), the electrostatic interaction between the electron clouds of the
colliding molecules is repulsive. That repulsion effectively defines the size of the molecules.
O2 "permeates" approximately 3-4 times faster than does N2 through a typical rubber, as is used in tires, primarily
because O2 has a slightly smaller effective molecular size than does N2.
A relationship that governs "permeation" is based on Fick's Law of Diffusion and Henry's Law of Solubilities, which
takes into account the relative sizes of the molecules and their sizes compared to the very small passage way
dimensions in the solid material (such as a rubber) through which the molecules "permeate". Combining Fick's and
Henry's Laws yields the overall equation governing permeation of small molecules, such as gases, in material, such as
rubbers and other plastics.
Let's call the rate of permeation of gas (i), Ji, J-sub-i, which is simply the volumetric flux of gas permeation per unit of
time. Conveniently used units of Ji are cubic centimeters of gas per second, or cm^3/s.
Consider a sheet of the rubber, such as a section of the tire wall.
That flux of gas permeating through a material is directly proportional to the first three factors, below, and inversely to
the fourth factor, below:
1. the area, call it A (in units of square centimeters, cm^2) of the sample of the rubber - More flux of gas would occur, if
the area were larger, if everything else were the same;
next,
2. the driving force for transport across the wall, which is the difference in concentration of gas (i) across the tire wall -
for convenience with gases, a nearly exactly correct measure of this is the difference in partial pressures (pi) of that
gas (i) on the two sides of the tire wall (i.e., pi inside minus pi outside) - Obviously, a higher partial pressure (pressure
units are cmHg, centimeters of mercury, and remember that 76 cmHg = 1 atmosphere = 14.7 psi) inside versus
outside means there is more driving force to promote transport across the tire wall;
then next,
3. the intrinsic permeability P, call it Pij, or P-sub-i-sub-j, is the "permeability coefficient" for the particular material (j) for
that type of gas (i) - Note that various materials, i.e., different types of rubbers or plastics will permeate O2 faster or
slower depending on the details of solid state structures of the materials, and different types of gases will permeate
each material faster or slower depending on the relative sizes of the gas molecules, as well as on how soluble the gas
is in the solid material; then lastly,
4. the thickness L (in units of cm) of the material - you can see that if the tire wall were, say, twice as thick, one would
expect half the permeation rate (flux, cm^3/s), all other things being equal.
Combine these four terms, and you get the permeation equation:
Ji = [ Pij x A x (pi inside - pi outside) ] / L
flux = permeability coefficient of gas (i) in material (j) of the tire wall multiplied by area multiplied by the partial pressure
difference for gas (i) across the tire wall divided by the thickness of the tire wall.
Similarly, for the other gas (m), its flux would be:
Jm = [ Pmj x A x (pm inside - pm outside) ] / L
since it would have a different permeability coefficient in that same rubber (j) and a different driving force across the
tire wall.
So, the fluxes for different gases will be different, depending on the relative magnitudes of the permeability coefficients
of the two different types of gas molecules and the relative concentrations (partial pressures) of the two types of
molecules on each side of the tire wall (i.e., inside vs outside).
From the early part of this discussion, you will now recognize that Pi, where gas (i) is O2, is greater than Pm, where
gas (m) is N2, principally because O2 has a smaller kinetic diameter than N2 and thus O2 has a larger permeability
coefficient than does N2 - actually O2 has a permeability coefficient in a typical tire rubber material, which is about 3-4
times that of N2 in the same material. Permeation of O2 and N2 is primarily determined by size effects, because at
normal temperatures and pressures relevant to the discussions of tires, these gases behave almost perfectly as Ideal
Gases. As such, the differences in solubilities of O2 and N2 in most rubbers and plastics are too small to contribute to
differences in their permeability coefficients. The differences observed are essentially solely due to the slight
differences in the size of O2 relative to N2.
In case you wish to do your own calculations, the units for P (the permeability coefficients) most often used in the
technical literature are:
[ cm^3 x cm ] / [ s x cm^2 x cmHg ] and for convenience, a standard unit of permeability is called the Barrer, after
Richard Barrer, one of the early pioneers in studies of permeation in materials, such as rubbers and plastics. One
Barrer unit is:
1 times 10 to the minus 10th power [cm^3 x cm]/[s x cm^2 x cmHg]
In Barrers, for a typical rubber material, the permeability coefficient P, is dependant on temperature, but at 25C
(77F) for O2 is about 10 and for N2 is about 3.
I hope this helps clarify why O2 permeates faster through rubber than does N2 and a major aspect of why it is a good
idea to significantly reduce the amount of O2 used to fill tires by replacing most of the O2 in air with enriched N2. Since
N2 permeates through the tire rubber more slowly than would O2, using enriched nitrogen instead of air for tire filling
contributes to better maintenance of the proper inflation pressure for the tire. Better pressure maintenance contributes
to reduced tire wear, so that tires last longer and tire replacement costs are reduced.
A simple but approximately correct explanation of this lies in the mechanics of the flexing of tire walls. If proper inflation
pressure is maintained, the tire wall most effectively bears the weight of the vehicle. If pressure is allowed to fall too
low, extra flexing that occurs as the vehicle bounces somewhat along the road causes excessive mechanical fatigue of
the structure of the tire. Similar to flexing a wire coat hanger, this fatigue can weaken the tire faster than would be the
case were it kept inflated to a pressure more consistent with that intended in its design.
Dr. Keith Murphy
Air Products and Chemicals, Inc.
Prism Membranes
St. Louis, MO
 






How about this one.

Nitrogen pressure is more consistent than normal air pressure, because air typically contains varying amounts of moisture due to changes in the relative humidity. Water causes air to be inconsistent in its rate of expansion and contraction. So, a humid race in the southeast United States or a dry race in the desert western United States could make for unpredictable tire pressures if "dry" nitrogen were not used.

But the amount they charge is sick. If I could not do it for free at work I would not do it.
 






Gimmie a break. In practical terms, it does not matter. In real life testing, this has been disproven to be any benefit. The rest is pure crap.

JP
 






Gimmie a break. In practical terms, it does not matter. In real life testing, this has been disproven to be any benefit. The rest is pure crap.

JP
...And the congregation said "AMEN"!:thumbsup:
 






Ok here's an idea.
Since regular air is 78% nitrogen, wouldn't you eventually end up with almost 100% nitrogen filling up with regular air since the other gases with the smaller molecules would leak out, then you add more air which is 78% nitrogen again? get what I mean?

You are a genius! Why did no one else think of that ?
 






You are a genius! Why did no one else think of that ?

Probably because there is some flaw that makes this un-true... Im no expert.
 






Probably because there is some flaw that makes this un-true... Im no expert.

But did you stay at a Holiday Inn Express last night?:p:
 












Back
Top